Grade 8, Mathematics Lesson Plan

July 2

- 1. Date & Time: 6th period, Tuesday, July 2, 2013
- 2. Theme: Explaining with Algebraic Expressions
- 3. Instructor: Tokyo Gakugei University Affiliated Koganei Junior High School, Hideyuki Kawamura
- 4. Class: Tokyo Gakugei University Koganei Junior High School, Grade 8, Class D (40 Students)
- 5. Place: Educational Technology room
- 6. Name of the Unit: Calculations with Algebraic Expressions
- 7. About the Theme of This Lesson

The instructional material that I will be providing to the students in this lesson requires the students to describe a statement that is a revers statement of usual statements for determining numbers if they are multiples or not.¹ The objective for dealing with this material is providing an opportunity for the students to have experiences for generalizing and specializing by interpreting transformation process of algebraic expressions and grasping the meaning of them clearly.

About the process of utilizing algebraic expressions, Miwa (1896) describes it using the following diagram (see figure 1).

Figure 1: Diagram for Use of Algebraic Expressions (Miwa, 1996)

The diagram shows, when a algebraic expression is utilized, the processes of "expressing," "transforming" and "interpreting" take in the place. In the process of interpreting the algebraic expressions, generalization and specialization can be conducted by reexamining and grasping the meaning of the algebraic expressions. (Miwa, 2001) In other word, we can think that the act of interpreting an algebra expression facilitates an opportunity to create new mathematics. I thought if students could experience this process through a lesson, they would use algebraic expressions more actively and try to interpret them more willingly.

In the article written by Miwa (2001), an example of a process of interpreting algebraic expression for generalization and specialization is discussed by providing an example regarding how to distinguish multiples.

The discussion of the transformation process of the algebraic expression for distinguishing multiples of 9 (If a + b of the 2-digit numbers 10a + b are multiples of 9, the numbers are multiple of 9.) describes that 10a + b

This work is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License. 1 To view a copy of this license, visit <u>http://creativecommons.org/licenses/by-nc-sa/3.0/</u>

¹ Translator's note: Usually the statement for determining a 2-digit number is a multiple of 9 or not is written as "A 2-digit number 10a + b is a multiple of 9 when a + b is a multiple of 9." So the reverse statement that the instructor explaining here is "If a 2-digit number 10a + b is a multiple of 9, a + b is also a multiple of 9."

O IMPULS 国際算数数学授業研究プロジェクト International Math-teacher Professionalization Using Lesson Study

can be split into the part shows the multiples of 9 (9*a*) and the remainder part (a + b). By generalizing this idea, students could create methods for distinguishing multiples of other numbers.

In this lesson, I decided to ask students to think about the reverse of this problem that is "If a 2-digt number is a multiple of 9, (a number in the tens place) + (a number in the ones place) is also a multiple of 9." I have two reasons for setting up the problem like this way.

The first reason is when the algebraic expression 10a + b = 9n was established, because of the goal of the transformation of the algebra expression is a + b = 9 (n - a), it might be easier for the students to recognize the process of subtracting 9*a* from the both side of the equation.

The second reason is in the case of distinguishing if a number is the multiple 9 or not, students need to explain a reason why a number is a multiple of 9 or not by determining if the sum of the numbers in each place is a multiple of 9 or not. Therefore, many students would try to examine if the statement is valid or not by substituting the algebra expression with actual numbers that are the multiple of 9. If students examine the statement this way, students might proof this problem using a wrong reasoning that is because the original number is a multiple of 9 so the statement is valid. If this is the case, I thought it might be easier for the students think about the explanation if we make the supposition to "the 2-digit number is the multiple of 9." In other word, I thought the statement can be reversed and provide it to the students to work on. In this way, it might be easier for the students to explain and understand the logical story of generalizing idea by interpreting the algebraic expressions.

8. Goal of the Lesson

• Students generalize the statement by interpreting the process of explanation using algebraic expressions and grasp the mechanism of the expression.

<References>

三輪辰郎 (1996). 文字式の指導:序説, 筑波数学教育研究 15, pp.1-14. 三輪辰郎 (2001). 文字式の指導に関する重要な諸問題, 筑波数学教育研究 20, pp.23-38.

COMPULS 国際算数数学授業研究プロジェクト International Math-teacher Professionalization Using Lesson Study

9. Flow of the Lesson

Learning Process	Instruction	Anticipated Student Reactions	Instructional Pints to Remember OEvaluation Viewpoint
1.	The last lesson I asked you	 If we assign the 	○ Students are able to
Introduction	to explain "If a 2-digt	numbers in the tens	understand the
	number is a multiple of 9, (a	place as <i>a</i> and in the	explanation with
	digit in the tens place) + (a	ones place as <i>b</i> , the	algebraic expressions
	digit in the ones place) is	original number can be	that they worked on in
	also a multiple of 9." Do	expressed as 10a + b.	the previous lesson.
	you remember how you	This number is a	
	explained about that?	multiple of 9 so:	 Ask the students to show
		10a + b = 9n	all the steps involve for
		9a + a + b = 9n	transformation of algebraic
		a + b = 9n – 9a	equations.
		a + b = 9 (n − a)	
		From this algebraic	
		equation, (a digit in the	
	 Is there any part of the 	tens place) + (a digit in	
	statement that you might	the ones place) is a	○ Students are eager to
	want to change?	multiple of 9.	think about what part of
			the statement can be
		• 2-digit number \rightarrow	change.
		Increase the number of	
		digits.	
		• Multiple of 9 \rightarrow Multiple	
		of other numbers.	

CONTRACTION STREET STRE

2.	 If we change the digits to 	•	(a digit in the hundreds	\bigcirc Students are thinking
Expansion	3-digit, what should we do		place) + (a digit in the	enthusiastically about the
	to the part, (a digit in the		tens place) + (a digit in	part that they could
	tens place) + (a digit in the		the ones place), (a digit	change in the statement.
	ones place)?		in the hundreds place) +	
	\cdot If we change it to (a digit in		(digits less than and	
	the hundred place) + (digits		equal to the tens place),	
	less than and equal to the		(digits higher than and	
	tens place), how should we		equal to the tens place)	
	change the algebraic		+ (a digit in the ones	 Make sure to write the
	equation.		place).	statements side by side so
		•	If we assign the	that the students could
			numbers in the	understand clearly about
			hundreds place as a and	what were changed and
			in less than and equal to	what were not changes.
			the tens place as <i>b</i> :	
			100 <i>a</i> + b = 9n	
	 If the statement says 		99a + a + b = 9n	
	multiple of 7 instead of		a + b = 9n – 99a	
	multiple of 9, what do we		a + b = 9 (n – 11a)	
	need to do?			
	"If a 2-digt number is a			
	multiple of 7, (a digit in the			
	hundred place) + (digits			
	less than and equal to the			
	tens place) is also a			
	multiple of 9."			
	Is there any part of the			
	statement you need to			
	change?			
		•	Multiple of 9 \rightarrow multiple	
			of 7	
	 Let's think about the 			
	statement "If a 2-digt			
	number is a multiple of 7, (a			
	digit in the hundred place)			
	+ (digits less than and			
	equal to the tens place) is			
	also a multiple of 7."			

 D a multiple of 7.
 1

 This work is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.
 4

 To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/3.0/

		•	If we assign the	\bigcirc By recalling and utilizing
			numbers in the	how the algebraic
			hundreds place as a and	equation was
			in less than and equal to	transformed in the case
			the tens place as b:	of multiple of 9, students
			100 <i>a</i> + b = 7n	are trying to think about
			98a + 2a + b = 7n	the case of multiple of 7.
			2a + b = 7n – 98a	
			2a + b = 7 (n –	
			14 <i>a</i>)	 By interpreting the
		•	The method (a digit in	explanations using algebra
			the hundreds place) +	equations carefully, help
			(digits lesson than and	students understand the
			equal to the tens place)	necessity of transformation
			does not work well.	of the equation to reach to
		•	We need to change it to	the conclusion of this
			(a digit in the hundreds	problem solving.
			place) × 2 + (digits less	
			than and equal to the	· Help students to become
			tens place).	conscious about they are
	\cdot What kind of ideas did you	•	For the multiples of 9.	thinking about the case of
	use to do the		100 is split into 99 and	multiple of 7 based on the
	transformation of the		1.	case they worked on
	algebraic equation?	•	99 is a multiple of 9 so it	multiple of 9.
			that we can factor 9 out.	
			1 is what is left.	
3. Summary	What are the commonalities	•	Leaving <i>b</i> at the left side	 By asking the students
	of these three		of equal sign as it is.	identify the commonality
	transformations of algebraic	•	Splitting 10 and 100 into	among the algebraic
	equations?		the number that is the	equations, help students
			multiple of 9 or 7 and the	to pay attention to the part
			number that is left.	of the structure of the
		•	Transform the right side	algebraic equations that
			of the equations into	have not changed
			something like 7×() or	although the statements
			9×().	were changed.
			. ,	